

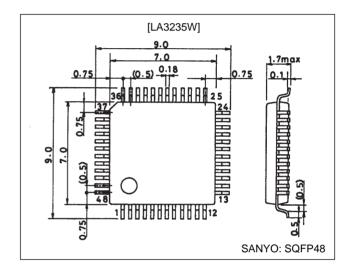
1.5 V Record Preamplifier

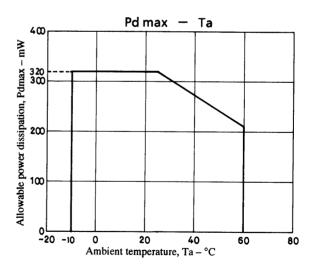
Overview

The LA3235W is a single-chip record system IC for use in 1.5 V headphone stereo products. While previous recording systems were implemented using a dedicated tape drive, by using the LA3235W, such a system can be implemented by adding electronic switching to a playback-only tape drive. Additionally, a compact record/playback system can be implemented with just two chips by combining this IC and the LA4590W 1.5 V preamplifier/power amplifier IC

Functions

- Microphone amplifier (with ALC) ×2
- Microphone monitor amplifier ×2
- Radio amplifier (with ALC) × 2
- Record bias power supply
- Record amplifier ×4 (with forward/reverse switching and muting functions)
- Microphone power supply
- All control circuits, including electronic switching circuits, built in


Features


- Miniature package (48-pin SQFP)
- Built-in microphone and record bias power supplies
- Built-in radio amplifier with ALC circuit
- Systems can be easily controlled from a microprocessor using the built-in electronic switching, power supply, and amplifier block control circuits.

Package Dimensions

unit: mm

6134A-SQFP48

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		4.5	V
Allowable power dissipation	Pd max		320	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +125	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Pagammandad gupply valtage	V _{CC} 1, V _{CCRF}		1.5	V
Recommended supply voltage	V _{CC} 2		2.4	V
Operating cumply voltage range	V _{CC} 1, V _{CCRF}		0.9 to 2.2	V
Operating supply voltage range	V _{CC} 2		2.0 to 4.0	V

Operating Characteristics at Ta = 25°C, $V_{CC}1$ and V_{CCRF} = 1.2 V, $V_{CC}2$ = 2.4 V, f = 1 kHz, 0 dBm = 0.775 V, R_{LMIC} = 10 k Ω , R_{LRadio} = 10 k Ω , R_{LMON} = 10 k Ω , R_{LREC} = 3 k Ω

Parameter	Symbol	Conditions	min	typ	max	Unit
No signal supply current: record/V _{CC} 1	I _{CCR1}	Microphone Rg = $6.8 \text{ k}\Omega$	0.08	0.13	0.23	mA
No signal supply current: record/V _{CCRF}	I _{CCRR}	Microphone Rg = $6.8 \text{ k}\Omega$	2.0	3.5	5.0	mA
No signal supply current: record/V _{CC} 2	I _{CCR2}	Microphone Rg = $6.8 \text{ k}\Omega$	0.85	1.5	2.1	mA
No signal supply current: playback/V _{CC} 1	I _{CCP1}			0.1	5.0	μΑ
No signal supply current: playback/V _{CCRF}	I _{CCPR}		0.36	0.6	1.0	mA
No signal supply current: playback/V _{CC} 2	I _{CCP2}		0.3	0.5	0.75	mA
[Microphone amplifier] (measured with ALC	off)					
Voltage gain (closed)	VG _M	$V_O = -20 \text{ dBm}$		35		dB
Maximum output voltage	V _{O maxM}	THD = 1%		320		mV
Total harmonic distortion	THD _M	V _O = 200 mV		0.1		%
Output noise voltage	V _{NOM}	Rg = $6.8 \text{ k}\Omega$, BPF = 20 Hz to 20 kHz		130		μV
Crosstalk (interchannel)	CT _M	$V_O = -20$ dBm, TUNE 1 KHz		46		dB
Ripple rejection ratio	SVRR _M	Rg = 6.8 k Ω , f _R = 100 Hz, V _R = -30 dBm		37		dB
[Radio Amplifier] (measured with ALC off)						
Voltage gain (closed)	VG _R	$V_O = -20 \text{ dBm}$		14.5		dB
Maximum output voltage	V _{O maxR}	THD = 1%		320		mV
Total harmonic distortion	THDR	$V_0 = 200 \text{ mV}$		0.1		%
Output noise voltage	V _{NOR}	Rg = $6.8 \text{ k}\Omega$, BPF = 20 Hz to 20 kHz		30		μV
Crosstalk (interchannel)	CTR	$V_O = -20$ dBm, TUNE 1 KHz		59		dB
Ripple rejection ratio	SVRR _R	Rg = 6.8 kΩ, f_R = 100 Hz, V_R = -30 dBm		55		dB
[Monitor Amplifier]						
Voltage gain (closed)	VG _{MON}	$V_O = -20 \text{ dBm}$		9.5		dB
Maximum output voltage	V _{OMON}	THD = 1%		260		mV
Total harmonic distortion	THD _{MON}	V _O = 100 mV		0.1		%
Output noise voltage	V _{NOMON}	BPF = 20 Hz to 20 kHz		11		μV
Crosstalk (interchannel)	CT _{MON}	$V_O = -20 \text{ dBm}$		59		dB
Ripple rejection ratio	SVRR _{MON}	$f_R = 100 \text{ Hz}, V_R = -30 \text{ dBm}$		57		dB
[Record Amplifier]	•					
Voltage gain (closed)	VG _{REC}	$V_O = -10 \text{ dBm}$		22		dB
Maximum output voltage	V _{OREC}	THD = 1%		670		mV
Total harmonic distortion	THD _{REC}	V _O = 300 mV		0.08		%
Output noise voltage	V _{NOREC}	BPF = 20 Hz to 20 kHz		46		μV
Crosstalk (interchannel)	CT _{REC}	$V_O = -10 \text{ dBm}$		55		dB
Ripple rejection ratio	SVRR _{REC}	$f_R = 100 \text{ Hz}, V_R = -30 \text{ dBm}$		55		dB

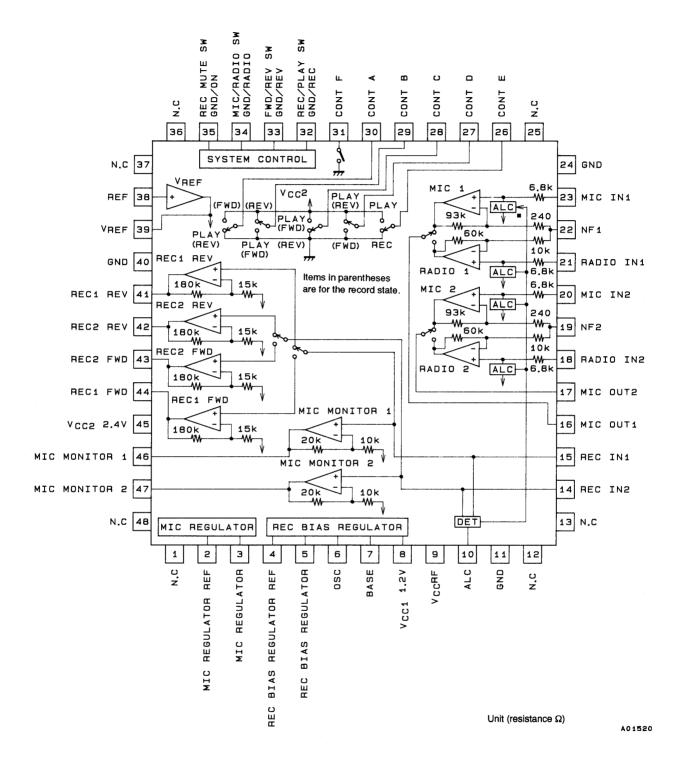
LA3235W

Continued form preceding page.

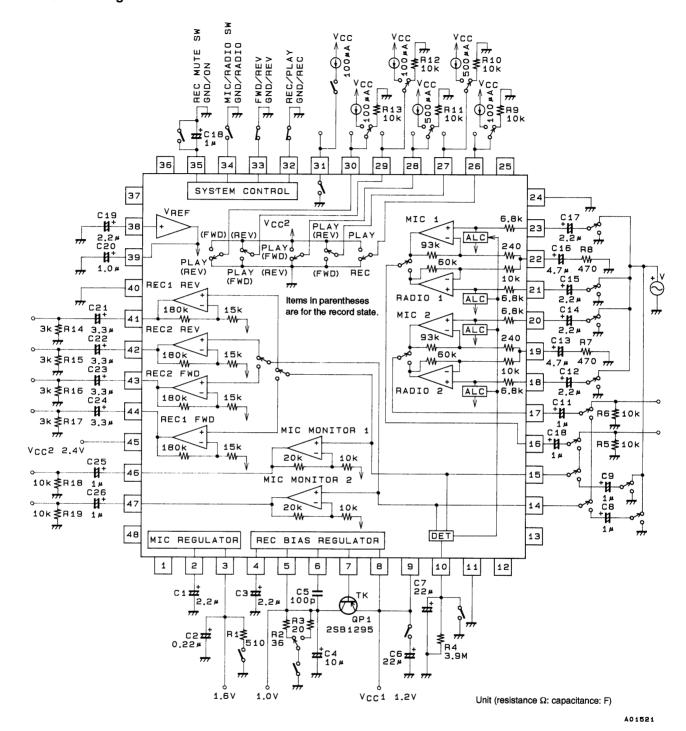
Parameter	Symbol	Conditions	min	typ	max	Unit
[Microphone + Record]						
Voltage gain (closed)	VG _{MR}	V _O = -10 dBm, ALC OFF	52	56.6	60	dB
Maximum output voltage	V _{OMR}	THD = 3%	500	700		mV
Total harmonic distortion	THD _{MR}	Vi = −40 dBm		0.55	1.3	%
ALC voltage	ALCV _{MR}	Vi = -40 dBm, Rg = 6.8 kΩ	300	400	500	mV
ALC balance	ALCB _{MR}	Vi = -40 dBm, Rg = 6.8 kΩ		0	1.5	dB
ALC start input	ALCI _{MR}		-65.5	-62.5	-59.5	dBm
ALC width	ALCW _{MR}	Input level relative to the ALC start point such that the output is +3 dB.	35	42		dB
Output noise voltage	V _{NOMR}	Rg = $6.8 \text{ k}\Omega$, BPF = 20 Hz to 20 kHz		1.5	2.8	mV
Crosstalk (interchannel)	CT _{MR}	Vi = -40 dBm	11	19		dB
	SVRR _{MR1}	Rg = 6.8 kΩ, f_R = 100 Hz, V_R = -30 dBm	10	16		dB
Ripple rejection ratio	SVRR _{MR2}	Rg = 6.8 kΩ, f_R = 100 Hz, V_R = -20 dBm With ripple added to V_{CC} 2, TUNE = 100 Hz	50	58		dB
[Radio + Record]						
Voltage gain	VG _{RR}	V _O = -10 dBm, ALC OFF	31.5	35.5	39.5	dB
Maximum output voltage	V _{ORR}	THD = 3%	470	570		mV
Total harmonic distortion	THD _{RR}	Vi = −30 dBm		0.55	1.3	%
ALC voltage	ALCV _{RR}	$Vi = -30$ dBm, $Rg = 6.8$ k Ω	300	410	500	mV
ALC balance	ALCB _{RR}	$Vi = -30$ dBm, $Rg = 6.8$ k Ω		0	1.5	dB
ALC start input	ALCI _{RR}		-45.5	-42.5	-39.5	dBm
ALC width	ALCW _{RR}	Input level relative to the ALC start point such that the output is +3 dB.	35	40		dB
Output noise voltage	V _{NORR}	Rg = $6.8 \text{ k}\Omega$, BPF = 20 Hz to 20 kHz		340	610	μV
Crosstalk (interchannel)	CT _{RR}	Vi = −30 dBm	35	47		dB
Ripple rejection ratio	SVRR _{RR}	Rg = 6.8 kΩ, f_R = 100 Hz, V_R = -30 dBm	25	32		dB
[Microphone + Monitor]						
Voltage gain (closed)	VG _{MMON}	V _O = -20 dBm, ALC OFF	39.5	43.5	47.5	dB
Maximum output voltage	V _{OMMON}	THD = 3%	150	310		mV
Total harmonic distortion	THD _{MMON}	Vi = −40 dBm		0.55	1.3	%
ALC voltage	ALCV _{MMON}	Vi = -40 dB, Rg = 6.8 kΩ	60	90	135	mV
Output noise voltage	V _{NOMMON}	Rg = $6.8 \text{ k}\Omega$, BPF = 20 Hz to 20 kHz		350	650	μV
Crosstalk (interchannel)	CT _{MMON}	Vi = -40 dBm	11	19		dB
	SVRR _{MMON}	Rg = 6.8 kΩ, f_R = 100 Hz, V_R = -30 dBm	21	27		dB
Ripple rejection ratio	SVRR _{MMON}	Rg = 6.8 k Ω , f _R = 100 Hz, V _R = -20 dBm With ripple added to V _{CC} 2, TUNE = 100 Hz	60	70		dB
[Record Bias Power Supply]						
Output voltage	V _{RBR1}	I _{RBR} = -50 mA	0.92	1.0	1.08	V
Ripple rejection ratio	SVRR _{RBR1}	$f_R = 100 \text{ Hz}, V_R = -30 \text{ mA}$ $I_{RBR} = -50 \text{ mA}, 2SB1295; using 6 ranks}$	45	53		dB
Output voltage	V _{RBR2}	V _{CC} 1 = 1.0 V, I _{RBR} = 30 mA	0.89	0.93		V
Ripple rejection ratio	SVRR _{RBR2}	V_{CC} 1 = 1.0 V, f_R = 100 Hz, V_R = -30 dBm I_{RBR} = 30 mA, 2SB1295; using 6 ranks	33	40		dB
[Microphone Power Supply]						
Output voltage	V _{MR}	I _{MR} = 3 mA	1.55	1.65	1.75	V
Ripple rejection ratio	SVRR _{MR}	$f_R = 100 \text{ Hz}, V_R = -20 \text{ dBm}$ $I_{MR} = 3 \text{ mA}, \text{ with ripple added to } V_{CC}2$	55	70		dB
[Switching Control]: Record mode	1					4
Forward: CONT A and C pins: source	I _{FA} , I _{FC}	Measured with $R_L = 10 \text{ k}\Omega$	20	35		μA
Forward: CONT B pin sink	V _{FB}	I _{IN} = 100 μA		64	150	mV
Forward: CONT D pin sink	V _{FD}	I _{IN} = 500 μA		110	230	mV
Reverse: CONT B and D pins source	I _{RB} , I _{RD}	Measured with $R_1 = 10 \text{ k}\Omega$	20	35		μA
Reverse: CONT A pin sink	V _{RA}	I _{IN} = 100 μA	-	64	150	mV
Reverse: CONT C pin sink	V _{RC}	I _{IN} = 500 μA		110	230	mV
CONT E pin sink	V _E	I _{IN} = 100 μA		30	70	mV

LA3235W

Continued form preceding page.

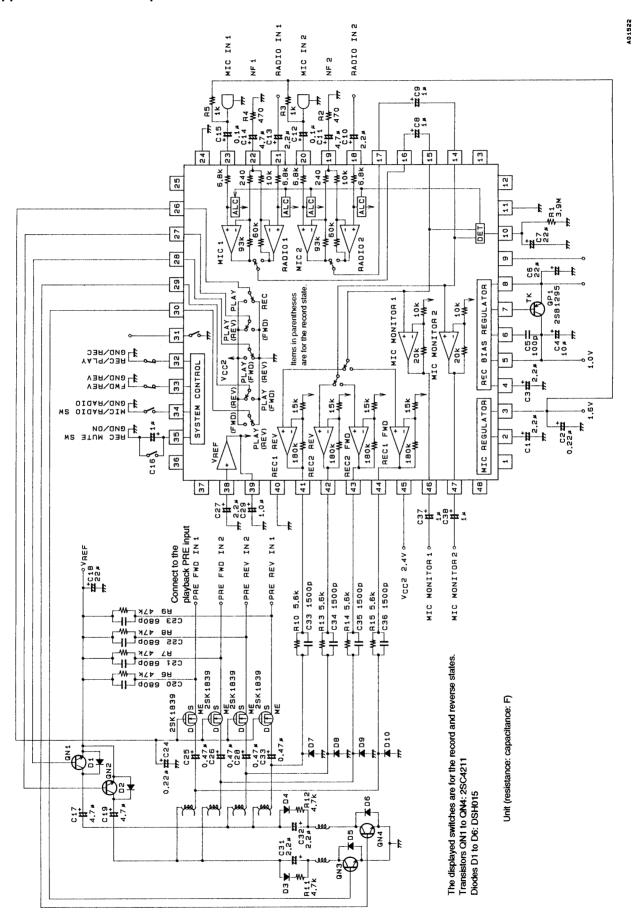

Parameter	Symbol	Conditions	min	typ	max	Unit
[Switching Control]: Playback mode						
CONT C and D pins source	I _{PC} , I _{PD}	Measured with $R_L = 10 \text{ k}\Omega$	20	35		μA
CONT E pin source	Ι _Ε	Measured with $R_L = 10 \text{ k}\Omega$	10	18		μA
CONT A and B pins sink	V_{PA}, V_{PB}	I _{IN} = 100 μA		64	150	mV
Radio CONT F pin sink	V _{RF}	I _{IN} = 100 μA		64	150	mV
Microphone CONT F pin	V _{MF}	$Vi = -40$ dBm, $Rg = 6.8$ k Ω	1.1	1.2		V

Switching Control Block: Operating Mode Table

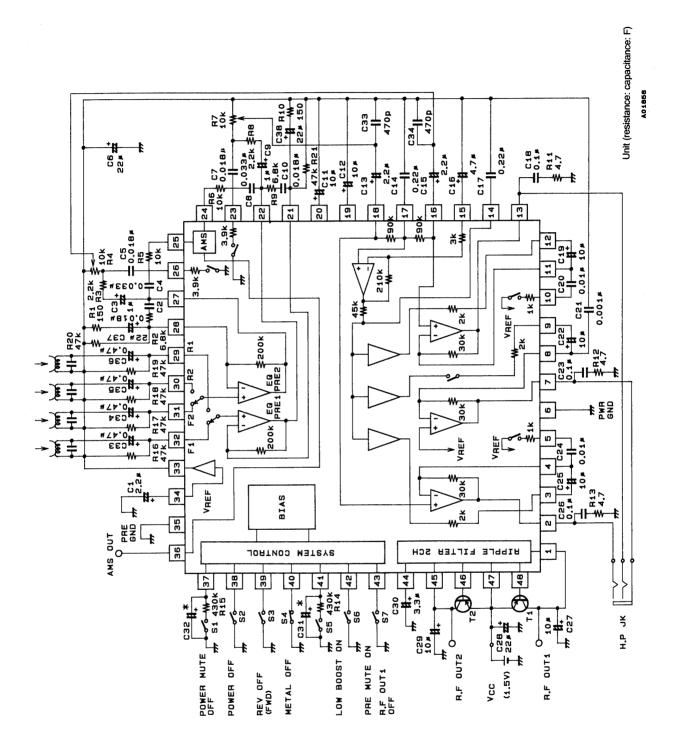

Item		A*1	B*1	C*1	D*1	E*1	F*2
REC/MIC/RADIO	FWD	Н	L	Н	L	L	L
REC/IVIIC/RADIO	REV	L	Н	L	Н	L	L
PLAY	MIC	L	L	Н	Н	Н	Н
FLAT	RADIO	L	L	Н	Н	Н	L

Note: 1. The high-level voltage for A, B, C, D, and E is close to the $V_{CC}2$ voltage. 2. The high-level voltage for F is close to the V_{CCRF} voltage.

Block Diagram



Test Circuit Diagram



No. 4530-6/13

Application Circuit Example 1

Application Circuit Example 2: Circuit using the LA4590W

Pin Functions : The indicated pin voltages are for $V_{CC}\mathbf{1}$ and RF = 1.2 V and $V_{CC}\mathbf{2}$ = 2.4 V.

Pin No.	Pin	Pin voltage (V)	Internal equivalent circuit	Notes
2	MIC REGULATOR REF	1.4	30Ka 300a A05200	Microphone power supply reference bias low-pass filter connection
3	MIC REGULATOR	1.65	3 \$6.8k0 A05201	Microphone power supply output Always on in record mode
4	REC BIAS REGULATOR REF	1.0	VCC1 3000 3000 A05202	Record bias power supply reference bias low-pass filter connection The value of the capacitor connected to this pin determines the SVRR.
5	REC BIAS REGULATOR	1.0	VCC1 30000 A05203	Record bias power supply output Always on in record mode
6	osc	0.5	NCC1	Oscillation suppression capacitor connection

Pin No.	Pin	Pin voltage (V)	Internal equivalent circuit	Notes
7	BASE	0.55	V _{CC} 1	External pnp transistor base drive connection
10	ALC	0.7	VCC AF 10 3000 A05206	Microphone and radio ALC rectifier connection The external resistor and capacitor connected to this pin determine the ALC attack and recovery times.
14 15	REC IN2 REC IN1	0.8	10k 0 15pF	 Record amplifier and microphone monitor amplifier inputs A buzz reduction capacitor is incorporated in these pin circuits. The input resistance is 10 kΩ.
16 17	MIC OUT1 IMC OUT2	0.8	MIC.REG 3000 W A05208	Microphone and radio amplifier outputs
18 21	RADIO IN2 RADIO IN1	0.8	30 k 0 5pF	 Radio amplifier inputs The input resistance is variable over the range 6.8 to 36.8 kΩ.

Pin No.	Pin	Pin voltage (V)	Internal equivalent circuit	Notes
19 22	NF2 NF1	0.8	93ka 240a W 10ka 10ka 850ka	Microphone and radio amplifier noise filter connections
20 23	MIC IN2 MIC IN1	0.8	5pF 30κΩ A05211	 Microphone amplifier inputs The input resistance is variable over the range 6.8 to 36.8 kΩ.
26 27 28	CONT E CONT D CONT C	V _{CC} 2 to 0	26 100 g	• Fixed-current pull-up current sources Pin 2618 μA Pins 27 and 2835 μA
29 30	CONT B CONT A	V _{CC} 2 to 0	300g WW A08213	• 35-µA fixed-current pull-up current sources
31	CONT F	V _{CC} RF to 0	300g 300g A05214	• The pull-up resistor has a value of 100 $k\Omega$ ±20%.

Pin No.	Pin	Pin voltage (V)	Internal equivalent circuit	Notes
32	REC/PLAY SW	V _{CC} RF to 0	32 32 A05215	Sets the system to record mode when pulled down and to playback mode when open. Record mode condition: V32 ≤ 0.1 V
33	FWD/REV SW	0.7 to 0	33 3000 A05218	 Output source current I₃₃ ≈ 4 µA Sets the system to reverse mode when pulled down. Reverse mode condition: V33 ≤ 0.4 V
34	MIC/RADIO SW	0.7 to 0	3000 A05217	 Output source current I₃₄ ≈ 8 µA Sets the system to radio mode when pulled down. Radio mode condition: V34 ≤ 0.4 V
35	REC MUTE SW	V _{CC} RF to 0	35 W 3000 A05218	 Output source current I₃₅ ≈ 13 μA Sets the system to muted mode when pulled down. Muted mode condition: V35 ≤ 0.1 V
38	REF	0.8	300 n 300 n 20 k	V _{REF} amplifier reference bias low-pass filter connection

Pin No.	Pin	Pin voltage (V)	Internal equivalent circuit	Notes
39	V _{REF}	0.8	39 1000 A05220	V _{REF} amplifier output Virtual ground bias for all amplifier blocks The V _{REF} amplifier makes this a low-impedance circuit.
41 42 43 44	REC1 REV REC2 REV REC2 FWD REC1 FWD	1.0	1000 180kg ₹15kg	 Record amplifier outputs The output impedance in playback mode is 195 kΩ ±20%.
46 47	MIC MONITOR 1 MIC MONITOR 2	0.8	3000 A 10k 0 A	Microphone monitor amplifier output

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.