


Intellimod[™] Module
Dual-In-Line Intelligent
Power Module
5 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
Α	3.11±0.02	79.0±0.5
В	1.22±0.02	31.0±0.5
С	0.63	16.0
D	2.76±0.01	70.0±0.3
Е	0.5	12.7
F	0.39±0.01	10.0±0.3
G	0.1±0.01	2.54±0.3
Н	0.2±0.01	5.08±0.3
J	1.0	25.4
K	0.11	2.8
L	0.12 Dia.	2.9 Dia.
М	0.18±0.01 Dia.	4.5±0.2 Dia.
N	1.42±0.02	36.2±0.5
P	0.03	0.7

- -		
Dimensions	Inches	Millimeters
Q	0.08	2.0
R	0.66	16.73
S	0.44	11.13
Т	015.±0.04	3.8±1.0
U	0.082	2.1
V	0.086	2.2
W	0.31	8.0
X	0.07	1.8
Υ	0.34	8.6
Z	0.03	0.8
AA	0.10	2.7
AB	0.48	12.33
AC	0.39	10.12
AD	0.068	1.75

Description:

DIPIPMs are intelligent power modules that integrate power devices, drivers, and protection circuitry. Design time is reduced by the use of application-specific HVICs and value-added features such as linear temperature feedback. Overall efficiency and reliability are increased by the use of full gate CSTBT technology and low thermal impedance.

Features:

- ☐ Low-loss, Full Gate CSTBT IGBTs
- ☐ Single Power Supply
- □ Integrated HVICs
- ☐ Direct Connection to CPU

Applications:

- ☐ Variable Speed Pumps
- ☐ Variable Speed Compressors
- ☐ Small Motor Control

Ordering Information:

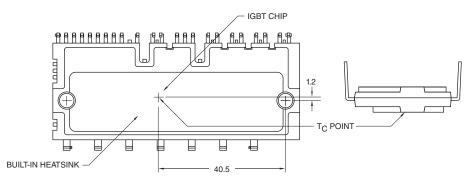
PS22A72 is a 1200V, 5 Ampere DIP Intelligent Power Module.

PS22A72 Intellimod™ Module Dual-In-Line Intelligent Power Module 5 Amperes/1200 Volts

Absolute Maximum Ratings, $T_i = 25$ °C unless otherwise specified

Characteristics	Symbol	PS22A72	Units
Self-protection Supply Voltage Limit (Short Circuit Protection Capability)*	V _{CC(prot.)}	800	Volts
Module Case Operation Temperature (See T _C Measurement Point Below)	T _C	-20 to 100	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Mounting Torque, M4 Mounting Screws	_	13	in-lb
Module Weight (Typical)	_	65	Grams
Isolation Voltage, AC 1 minute, 60Hz Sinusoidal, Connection Pins to Heatsink Plate	V _{ISO}	2500	Volts
IGBT Inverter Sector			
Supply Voltage (Applied between P-NU, NV, NW)	V _C C	900	Volts
Supply Voltage, Surge (Applied between P-NU, NV, NW)	V _{CC(surge)}	1000	Volts
Collector-Emitter Voltage (T _C = 25°C)	V _{CES}	1200	Volts
Collector Current (T _C = 25°C)	±ΙC	5	Amperes
Peak Collector Current (T _C = 25°C, <1ms)	±lCP	10	Amperes
Collector Dissipation (T _C = 25°C, per 1 Chip)	P _C	44.6	Watts
Power Device Junction Temperature**	Тj	-20 to 150	°C
Control Sector			
Supply Voltage (Applied between V _{P1} -V _{PC} , V _{N1} -V _{NC})	V _D	20	Volts
Supply Voltage (Applied between V _{UFB} -V _{UFS} , V _{VFB} -V _{VFS} , V _{WFB} -V _{WFS})	V _{DB}	20	Volts
Input Voltage (Applied between U _P , V _P , W _P -V _{PC} , U _N , V _N , W _N -V _{NC})	V _{IN}	-0.5 ~ V _D +0.5	Volts
Fault Output Supply Voltage (Applied between F _O -V _{NC})	V _{FO}	-0.5 ~ V _D +0.5	Volts
Fault Output Current (Sink Current at F _O Terminal)	I _{FO}	1	mA

Current Sensing Input Voltage (Applied between C_{IN} - V_{NC})


* V_D = 13.5 ~ 16.5V, Inverter Part, T_j = 125°C, Non-repetitive, Less than 2 μ s

 V_{SC}

 $-0.5 \sim V_D + 0.5$

Volts

T_C Measurement Point

^{**}The maximum junction temperature rating of the power chips integrated within the DIPIPM is 150° C (@T_f $\leq 100^{\circ}$ C). However, to ensure safe operation of the DIPIPM, the average junction temperature should be limited to T_{j(avg)} $\leq 125^{\circ}$ C (@T_f $\leq 100^{\circ}$ C).

PS22A72 Intellimod™ Module Dual-In-Line Intelligent Power Module 5 Amperes/1200 Volts

Electrical and Mechanical Characteristics, T_i = 25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
IGBT Inverter Sector						
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 5A, T _j = 25°C, V _D = V _{DB} = 15V, V _{IN} = 5V	_	1.9	2.6	Volts
	•	I _C = 5A, T _j = 125°C, V _D = V _{DB} = 15V, V _{IN} = 5V	_	2.0	2.7	Volts
Diode Forward Voltage	V _{EC}	$T_j = 25^{\circ}C$, $-I_C = 5A$, $V_{IN} = 0V$	_	2.5	3.0	Volts
Inductive Load Switching Times	t _{on}		0.8	1.5	2.2	μs
	t _{rr}	$V_{CC} = 600V, V_D = V_{DB} = 15V,$	_	0.3	_	μs
	t _{C(on)}	I_C = 5A, T_j = 125°C, V_{IN} = 0 \Leftrightarrow 5V,	_	0.6	0.9	μs
	t _{off}	Inductive Load (Upper-Lower Arm)	_	2.8	3.8	μs
	t _{C(off)}		_	0.7	1.0	μs
Collector-Emitter Cutoff Current	I _{CES}	$V_{CE} = V_{CES}, T_j = 25^{\circ}C$	_	_	1.0	mA
	•	V _{CE} = V _{CES} , T _j = 125°C	_	_	10.0	mA
Control Sector						
Circuit Current	I _D	V _D = V _{DB} = 15V, V _{IN} = 5V,	_	_	3.70	mA
		Total of V _{P1} -V _{PC} , V _{N1} -V _{NC}				
	•	V _D = V _{DB} = 15V, V _{IN} = 5V,	_	_	1.30	mA
		V _{UFB} -V _{UFS} , V _{VFB} -V _{VFS} , V _{WFB} -V _{WFS}				
	•	V _D = V _{DB} = 15V, V _{IN} = 0V,	_	_	3.50	mA
		Total of V _{P1} -V _{PC} , V _{N1} -V _{NC}				
	•	V _D = V _{DB} = 15V, V _{IN} = 0V,	_	_	1.30	mA
		$V_{UFB}\text{-}V_{UFS},V_{VFB}\text{-}V_{VFS},V_{WFB}\text{-}V_{WFS}$				
Fault Output Voltage	V _{FOH}	$V_{SC} = 0V$, F_O Terminal Pull-up to 5V by $10k\Omega$	4.9	_	_	Volts
	V _{FOL}	V _{SC} = 1V, I _{FO} = 1mA	_	_	1.1	Volts
Input Current	I _{IN}	V _{IN} = 5V	0.7	1.5	2.0	mA
Short-Circuit Trip Level*	I _{SC}	$-20^{\circ}\text{C} \le \text{T}_{\text{C}} \le 100^{\circ}\text{C}, \text{ V}_{\text{D}} = 15\text{V}$	8.5	_	_	Amps
Supply Circuit Undervoltage	UV _{DBt}	Trip Level, T _C ≤ 100°C	10.0	_	12.0	Volts
Protection	UV _{DBr}	Reset Level, T _C ≤ 100°C	10.5	_	12.5	Volts
	UV _{Dt}	Trip Level, T _C ≤ 100°C	10.3	_	12.5	Volts
	UV _{Dr}	Reset Level, T _C ≤ 100°C	10.8	_	13.0	Volts
Fault Output Pulse Width**	t _{FO}	C _{FO} = 22nF	1.6	2.4	_	ms
ON Threshold Voltage	V _{th(on)}	Applied between U _P , V _P , W _P -V _{PC} ,	_	_	2.6	Volts
OFF Threshold Voltage	V _{th(off)}	U _N , V _N , W _N -V _{NC}	8.0	_	_	Volts
Temperature Output	V _{OT}	At LVIC Temperature = 85°C	3.50	3.63	3.76	Volts

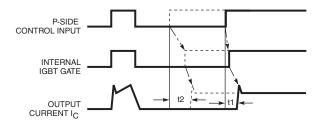
^{*} Short-Circuit protection is functioning only at the lower arms. Please select the value of the external shunt resistor such that the SC trip level is less than 85A.

^{**}Fault signal is asserted when the lower arm short circuit or control supply under-voltage protective functions operate. The fault output pulse-width t_{FO} depends on the capacitance value of C_{FO} according to the following approximate equation: C_{FO} = (12.2 x 10⁻⁶ x t_{FO} [F]).

***When the temperature rises excessively, the controller (MCU) should stop the DIPIPM.

PS22A72 Intellimod™ Module Dual-In-Line Intelligent Power Module 5 Amperes/1200 Volts

Thermal Characteristics, T_i = 25°C unless otherwise specified


Characteristic	Symbol	Condition	Min.	Тур.	Max.	Units
Thermal Resistance Junction to Case	R _{th(j-C)Q}	IGBT Part (Per 1/6 Module)	_	_	2.24	°C/Watt
Thermal Resistance Junction to Case	R _{th(i-C)D}	FWDi Part (Per 1/6 Module)	_	_	2.74	°C/Watt

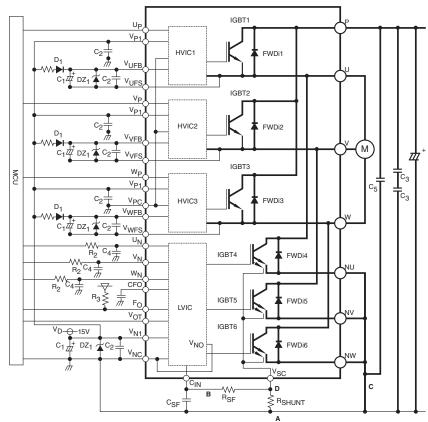
Recommended Conditions for Use

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Units
Supply Voltage	V _{CC}	Applied between P-NU, NV, NW	350	600	800	Volts
Control Supply Voltage	V _D	Applied between V _{P1} -V _{PC} , V _{N1} -V _{NC}	13.5	15.0	16.5	Volts
	V_{DB}	Applied between V _{UFB} -V _{UFS} ,	13.0	15.0	18.5	Volts
		V_{VFB} - V_{VFS} , V_{WFB} - V_{WFS}				
Control Supply Variation	ΔV_D , ΔV_{DB}		-1	_	1	V/µs
Arm Shoot-through	t _{DEAD}	For Each Input Signal, T _C ≤ 100°C	3.3	_	_	μs
Blocking Time						
PWM Input Frequency	f _{PWM}	T _C ≤ 100°C, T _j ≤ 125°C	_	_	15	kHz
Allowable rms Current*	Io	V _{CC} = 600V, V _D = 15V,	_	_	1.8	Arms
		f_C = 15kHz, PF = 0.8, Sinusoidal PWM,				
		$T_j \le 125^{\circ}C, T_C \le 100^{\circ}C$				
Minimum Input	P _{WIN(on)} **		_	_	_	μs
Pulse Width	P _{WIN(off)***}					
	$I_C \leq 5A$	$350 \le V_{CC} \le 800V$, $13.5 \le V_{D} \le 16.5V$,	_	_	_	μs
	5 ≤ I _C ≤ 8.5A	13.5 \leq V _{DB} \leq 16.5V, -20°C \leq T _C \leq 100°C,	_	_	_	μs
		N-line Wiring Inductance Less Than 10nH				
V _{NC} Variation	V _{NC}	Between V _{NC} -NU, NV, NW (Including Surge)	-5.0	_	5.0	Volts

^{*} The allowable rms current value depends on the actual application conditions.

Delayed Response Against Shorter Input OFF Signal Than PWIN(off), P-side only

 $\label{eq:solid_line} \mbox{Solid Line} - \mbox{OFF Pulse Width} > \mbox{PWIN(off)} \mbox{: Turn ON time t1}.$ Dotted Line – OFF Pulse Width < PWIN(off): Turn ON time t2.


^{**}If input signal ON pulse is less than P_{WIN(on)}, the device may not respond.

***The IPM may fail to respond to an ON pulse if the preceding OFF pulse is less than P_{WIN(off)}.

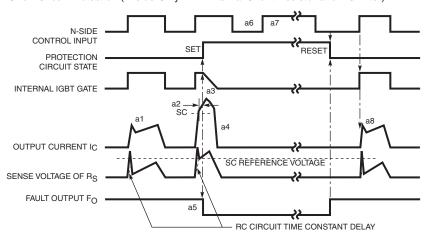
PS22A72 Intellimod™ Module Dual-In-Line Intelligent Power Module 5 Amperes/1200 Volts

Application Circuit

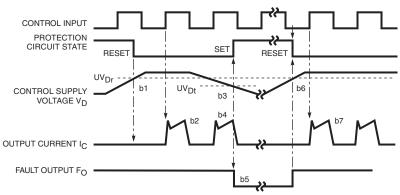
Component	Selec	ctio	n:
_	_		

Component	Selection:	
Dsgn.	Typ. Value	Description
D ₁	1A, 600V	Control and boot strap supply overvoltage suppression
DZ ₁	24V, 1W	Control and boot strap supply over voltage suppression
C ₁	10-100μF, 50V	Boot strap supply reservoir – electrolytic long lifem low impedance, 105°C
C ₂	0.22-2.0µF, 50V	Local decoupling/High frequency noise filters - multilayer ceramic (Note 4)
C ₃	200 to 2500μF, 450V	Main DC bus filter capacitor - electrolytic, long life, high ripple current, 105°C
C ₄	100pF, 50V	Optional input signal noise filter – multilayer ceramic (Note 11)
C ₅	0.1-0.22µF, 1000V	Surge voltage suppression (Note 2)
CSF	1000pF, 50V	Short circuit detection filter capacitor – multilayer ceramic
RSF	1.8kΩ	Short circuit detection filter resistor
RSHUNT	20ohm-500ohm	Current sensing resistor
R ₁	1-10Ω	Boot strap supply inrush limiting resistor – non-inductive, temperature stable, tight tolerance (Note 5)
R ₂	330Ω	Optional input signal noise filter (Note 11)
R ₃	10kΩ	Fault signal pull-up resistor (Note 9)

- 1) If control GND is connected to power GND by broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND at only a point at which NU, NV, NW are connected to power GND line.
- To prevent surge destruction, the wiring between the smoothing capacitor and the P-N1 terminals should be as short as possible. Generally inserting a $0.1\mu \sim 0.22\mu F$ snubber capacitor C_3 between the P-N1 terminals is recommended.
- The time constant R_1 , C_4 of RC filter for preventing the protection circuit malfunction should be selected in the range of $1.5\mu \sim 2\mu s$.
- SC interrupting time might vary with the wiring pattern. Tight tolerance, temp-compensated type is recommended for R₁,C₄.
- All capacitors should be mounted as close to the terminals of the DIPIPM as possible. (C1: good temperature, frequency
- characteristics electrolytic type, and C_2 : good temperature, frequency and DC bias characteristic ceramic type are recommended.) It is recommended to insert a Zener diode DZ₁ (24V/1W) between each pair of control supply terminals to prevent surge destruction.
- To prevent erroneous SC protection, the wiring from V_{SC} terminals to C_{IN} filter should be divided at the point D that is close to the terminal of sense resistor and the wiring should be patterned as short as possible.
- For sense resistor, the variation within 1% (including temperature characteristics), low inductance type is recommended.
- 1/8W is recommended, but an evaluation of your system is recommended.


 To prevent erroneous operation, wiring A, B, and C should be as short as possible.
- Fo output is open drain type. It should be pulled up to the positive side of 5V or 15V power supply with a resistor that limits
 F_Q sink current (I_{FQ}) under 1mA. (Over 5.1kΩ is needed and 10kΩ is recommended for 5V supply.)
 Error signal output width (I_{FQ}) can be set by the capacitor connected to the C_{FQ} terminal. I_{FQ}(typ) = C_{FQ} / 9.1 x 10-6 (s).
 Input drive is high-active type. There is a 3.3kΩ pull-down resistor integrated in the IC input circuit. To prevent malfunction, the wiring of each input
- should be patterned as short as possible. When inserting the RC filter, make sure the input signal level meets the turn-on and turn-off threshold voltage. Thanks to HVIC inside the module, connection to the MCU may be direct or with an opto-coupler.

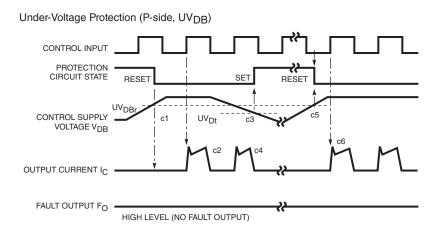
PS22A72 Intellimod™ Module Dual-In-Line Intelligent Power Module 5 Amperes/1200 Volts


Protection Function Timing Diagrams

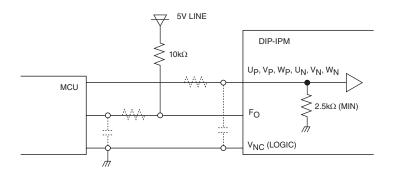
Short Circuit Protection (N-side Only with External Shunt Resistor and RC Filter)

- a1: Normal operation IGBT turns on and carries current.
- a2: Short circuit current is detected (SC trigger).
- a3: All N-side IGBT's gate are hard interrupted.
- a4: All N-side IGBT's turn off.
- a5: F_O output wirh a fixed pulse width (determined by the external capacitance C_{FO}).
- a6: Input "L" IGBT off.
- a7: Input "H" IGBT on, but during the F_O output perid the IGBT will not turn on.
- a8: IGBT turns on when L \rightarrow H signal is input after F $_{O}$ is reset.

Under-Voltage Protection (N-side , UV_D)

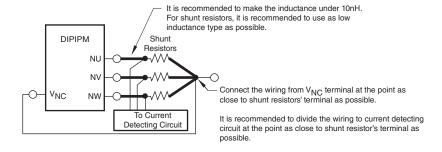


- b1: Control supply voltage V_D rises After V_D level reaches under voltage reset level (UV_{Df}), the circuits start to operate when next input is applied.
- b2 : Normal operation IGBT turns on and carries current.
- b3: V_D level dips to under voltage trip level (UV $_{Dt}$).
- b4: All N-side IGBT's turn off in spite of control input condition.
- b5: F_O is low for a minimum period determined by the capacitance C_{FO} but continuously during UV period.
- b6: V_D level reaches UV_{Dr}.
- b7: Normal operation IGBT turns on and carries current.


PS22A72 Intellimod™ Module Dual-In-Line Intelligent Power Module 5 Amperes/1200 Volts

Protection Function Timing Diagrams

- c1: Control supply voltage V_{DB} rises After V_{DB} level reaches under voltage reset level (UV $_{DB_1}$), the circuits starts to operate when next input is applied.
- c2: Normal operation IGBT turns on and carries current.
- c3: V_{DB} level dips to under voltage trip level (UV_{DBt}).
- c4: P-side IGBT turns off in spite of control input signal level, but there is no F_O signal output.
- c5: V_{DB} level reaches UV_{DBr}.
- c6: Normal operation IGBT on and carries current.


Typical Interface Circuit

NOTE: RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and the wiring impedance of the printed circuit board. The DIPIPM input signal section integrates a $2.5 \mathrm{k}\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.

7

Wiring Method Around Shunt Resistor

